Author Affiliations
Abstract
1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, CH-1015 Lausanne, Switzerland
Quasi-phase-matching (QPM) has become one of the most common approaches for increasing the efficiency of nonlinear three-wave mixing processes in integrated photonic circuits. Here, we provide a study of dispersion engineering of QPM second-harmonic (SH) generation in stoichiometric silicon nitride (Si3N4) waveguides. We apply waveguide design and lithographic control in combination with the all-optical poling technique to study the QPM properties and shape the waveguide dispersion for broadband spectral conversion efficiency inside Si3N4 waveguides. By meeting the requirements for maximal bandwidth of the conversion efficiency spectrum, we demonstrate that group-velocity matching of the pump and SH is simultaneously satisfied, resulting in efficient SH generation from ultrashort optical pulses. The latter is employed for retrieving a carrier-envelope-offset frequency of a frequency comb by using an f-2f interferometric technique, where supercontinuum and SH of a femtosecond pulse are generated in Si3N4 waveguides. Finally, we show that the waveguide dispersion determines the QPM wavelength variation magnitude and sign due to the thermo-optic effect.
Photonics Research
2020, 8(9): 09001475
Author Affiliations
Abstract
Institute of Solid State Physics, University of Latvia, Riga LV-1083, Latvia
An all-organic Mach-Zehnder waveguide device for volatile solvent sensing is presented. Optical waveguide devices offer a great potential for various applications in sensing and communications due to multiple advantageous properties such as immunity to electromagnetic interference, high efficiency, and low cost and size. One of the most promising areas for applications of photonic systems would be real-time monitoring of various hazardous organic vapor concentrations harmful to human being. The optical waveguide volatile solvent sensor presented here comprises a novel organic material applied as a cladding on an SU-8 waveguide core and can be used for sensing of different vapors such as isopropanol, acetone, and water. It is shown that the reason for the chemical sensing in device is the absorption of vapor into the waveguide cladding which in turn changes the waveguide effective refractive index. The presented waveguide device has small footprint and high sensitivity of the mentioned solvent vapor, particularly that of water. The preparation steps of the device as well as the sensing characteristics are presented and discussed.
Optical sensor waveguide organic materials Mach-Zehnder interference 
Photonic Sensors
2019, 9(4): 356

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!